The History Of Statistics The Measurement Of Uncertainty Before 1900

The History of Statistics
The History of Statistics in the 17th and 18th Centuries
The Politics of Large Numbers
Statistics on the Table
Figuring Out the Past
Dicing with Death
How to Lie with Statistics
Annotated Readings in the History of Statistics
Past, Present, and Future of Statistical Science
Cartoon Guide to Statistics
Statistics in Psychology
Fisher, Neyman, and the Creation of Classical Statistics
History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace
Measurement and Statistics on Science and Technology
The Science of Conjecture
Disciplining Statistics
The Seven Pillars of Statistical Wisdom
A History of Mathematical Statistics from 1750 to 1930
The History of Statistics
The History of Statistics
Introducing Statistics
A History of Probability and Statistics and Their Applications before 1750
Making It Count
Statistics in the 21st Century
Modern Statistics for Modern Biology
Classic Problems of Probability
Statistical Thought
The Rise of Statistical Thinking, 1820–1900
Strength in Numbers: The Rising of Academic Statistics Departments in the U. S.
Mathematical Statistics
Statistics on the Table
Statistics and the German State, 1900–1945
Statistics, Public Debate and the State, 1800–1945
Modern Interdisciplinary University Statistics Education
Uncertainty
Probability and Statistics
History, Theory, and Technique of Statistics
Arthur L Bowley
Handbook of Forensic Statistics
Classic Topics on the History of Modern Mathematical Statistics

The History of Statistics

This book presents an historical overview of the field--from its development to the present--at an accessible mathematical level. This edition features two new chapters--one on factor analysis and the other on the rise of ANOVA usage in psychological research. Written for psychology, as well as other social science students, this book introduces
the major personalities and their roles in the development of the field. It provides insight into the disciplines of statistics and experimental design through the examination of the character of its founders and the nature of their views, which were sometimes personal and ideological, rather than objective and scientific. It motivates further study by illustrating the human component of this field, adding dimension to an area that is typically very technical. Intended for advanced undergraduate and/or graduate students in psychology and other social sciences, this book will also be of interest to instructors and/or researchers interested in the origins of this omnipresent discipline.

The History of Statistics in the 17th and 18th Centuries

This lively collection of essays examines statistical ideas with an ironic eye for their essence and what their history can tell us for current disputes. The topics range from 17th-century medicine and the circulation of blood, to the cause of the Great Depression, to the determinations of the shape of the Earth and the speed of light.

The Politics of Large Numbers

In this unique monograph based on years of extensive work, Chatterjee presents the historical evolution of statistical thought from the perspective of various approaches to statistical induction. Developments in statistical concepts and theories are discussed alongside philosophical ideas on the ways we learn from experience.

Statistics on the Table

"There is nothing like it on the marketno others are as encyclopedicthe writing is exemplary: simple, direct, and competent." —George W. Cobb, Professor Emeritus of Mathematics and Statistics, Mount Holyoke College Written in a direct and clear manner, Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times presents a comprehensive guide to the history of mathematical statistics and details the major results and crucial developments over a
200-year period. Presented in chronological order, the book features an account of the classical and modern works that are essential to understanding the applications of mathematical statistics. Divided into three parts, the book begins with extensive coverage of the probabilistic works of Laplace, who laid much of the foundations of later developments in statistical theory. Subsequently, the second part introduces 20th century statistical developments including work from Karl Pearson, Student, Fisher, and Neyman. Lastly, the author addresses post-Fisherian developments. Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times also features: A detailed account of Galton's discovery of regression and correlation as well as the subsequent development of Karl Pearson's X^2 and Student's t A comprehensive treatment of the permeating influence of Fisher in all aspects of modern statistics beginning with his work in 1912 Significant coverage of Neyman–Pearson theory, which includes a discussion of the differences to Fisher’s works Discussions on key historical developments as well as the various disagreements, contrasting information, and alternative theories in the history of modern mathematical statistics in an effort to provide a thorough historical treatment Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times is an excellent reference for academicians with a mathematical background who are teaching or studying the history or philosophical controversies of mathematics and statistics. The book is also a useful guide for readers with a general interest in statistical inference.

Figuring Out The Past

In Disciplining Statistics Libby Schweber compares the science of population statistics in England and France during the nineteenth century, demonstrating radical differences in the interpretation and use of statistical knowledge. Through a comparison of vital statistics and demography, Schweber describes how the English government embraced statistics, using probabilistic interpretations of statistical data to analyze issues related to poverty and public health. The French were far less enthusiastic. Political and scientific élites in France struggled with the “reality” of statistical populations, wrestling with concerns about the
accuracy of figures that aggregated heterogeneous groups such as the rich and poor and rejecting probabilistic interpretations. Tracing the introduction and promotion of vital statistics and demography, Schweber identifies the institutional conditions that account for the contrasting styles of reasoning. She shows that the different reactions to statistics stemmed from different criteria for what counted as scientific knowledge. The French wanted certain knowledge, a one-to-one correspondence between observations and numbers. The English adopted an instrumental approach, using the numbers to influence public opinion and evaluate and justify legislation. Schweber recounts numerous attempts by vital statisticians and demographers to have their work recognized as legitimate scientific pursuits. While the British scientists had greater access to government policy makers, and were able to influence policy in a way that their French counterparts were not, ultimately neither the vital statisticians nor the demographers were able to institutionalize their endeavors. By 1885, both fields had been superseded by new forms of knowledge. Disciplining Statistics highlights how the development of “scientific” knowledge was shaped by interrelated epistemological, political, and institutional considerations.

Dicing with Death

This magnificent book is the first comprehensive history of statistics from its beginnings around 1700 to its emergence as a distinct and mature discipline around 1900. Stephen M. Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several applied sciences including astronomy, geodesy, experimental psychology, genetics, and sociology. He addresses many intriguing questions: How did scientists learn to combine measurements made under different conditions? And how were they led to use probability theory to measure the accuracy of the result? Why were statistical methods used successfully in astronomy long before they began to play a significant role in the social sciences? How could the introduction of least squares predate the discovery of regression by more than eighty years? On what grounds can the major works of men such as Bernoulli, De Moivre, Bayes, Quetelet, and Lexis be considered partial failures, while those of Laplace, Galton,
Read Book *The History Of Statistics The Measurement Of Uncertainty Before 1900*

Edgeworth, Pearson, and Yule are counted as successes? How did Galton’s probability machine (the quincunx) provide him with the key to the major advance of the last half of the nineteenth century? Stigler’s emphasis is upon how, when, and where the methods of probability theory were developed for measuring uncertainty in experimental and observational science, for reducing uncertainty, and as a conceptual framework for quantitative studies in the social sciences. He describes with care the scientific context in which the different methods evolved and identifies the problems (conceptual or mathematical) that retarded the growth of mathematical statistics and the conceptual developments that permitted major breakthroughs. Statisticians, historians of science, and social and behavioral scientists will gain from this book a deeper understanding of the use of statistical methods and a better grasp of the promise and limitations of such techniques. The product of ten years of research, *The History of Statistics* will appeal to all who are interested in the humanistic study of science.

How to Lie with Statistics

This book examines how the discipline of statistics should respond to the changing environment in which statisticians work. What does the academic, industry, and government customer need? How can the content of courses and of the overall statistics educational experience be arranged to address the customer's needs? Interdisciplinary needs are described, and successful university programs in interdisciplinary statistics are detailed.

Annotated Readings in the History of Statistics

This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book devoted to the philosophy of data aimed at working scientists and calls for a new consideration in the practice of probability and statistics to eliminate what has been referred to
as the "Cult of Statistical Significance." The book explains the philosophy of these ideas and not the mathematics, though there are a handful of mathematical examples. The topics are logically laid out, starting with basic philosophy as related to probability, statistics, and science, and stepping through the key probabilistic ideas and concepts, and ending with statistical models. Its jargon-free approach asserts that standard methods, such as out-of-the-box regression, cannot help in discovering cause. This new way of looking at uncertainty ties together disparate fields — probability, physics, biology, the “soft” sciences, computer science — because each aims at discovering cause (of effects). It broadens the understanding beyond frequentist and Bayesian methods to propose a Third Way of modeling.

Past, Present, and Future of Statistical Science

This book presents a detailed description of the development of statistical theory. In the mid twentieth century, the development of mathematical statistics underwent an enduring change, due to the advent of more refined mathematical tools. New concepts like sufficiency, superefficiency, adaptivity etc. motivated scholars to reflect upon the interpretation of mathematical concepts in terms of their real-world relevance. Questions concerning the optimality of estimators, for instance, had remained unanswered for decades, because a meaningful concept of optimality (based on the regularity of the estimators, the representation of their limit distribution and assertions about their concentration by means of Anderson’s Theorem) was not yet available. The rapidly developing asymptotic theory provided approximate answers to questions for which non-asymptotic theory had found no satisfying solutions. In four engaging essays, this book presents a detailed description of how the use of mathematical methods stimulated the development of a statistical theory. Primarily focused on methodology, questionable proofs and neglected questions of priority, the book offers an intriguing resource for researchers in theoretical statistics, and can also serve as a textbook for advanced courses in statisticcc.

Cartoon Guide to Statistics
If you want to outsmart a crook, learn his tricks—Darrell Huff explains exactly how in the classic How to Lie with Statistics. From distorted graphs and biased samples to misleading averages, there are countless statistical dodges that lend cover to anyone with an ax to grind or a product to sell. With abundant examples and illustrations, Darrell Huff’s lively and engaging primer clarifies the basic principles of statistics and explains how they’re used to present information in honest and not-so-honest ways. Now even more indispensable in our data-driven world than it was when first published, How to Lie with Statistics is the book that generations of readers have relied on to keep from being fooled.

Statistics in Psychology

Fisher, Neyman, and the Creation of Classical Statistics

This lively collection of essays examines in witty detail the history of some of the concepts involved in bringing statistical argument "to the table," and some of the pitfalls that have been encountered. The topics range from seventeenth-century medicine and the circulation of blood, to the cause of the Great Depression and the effect of the California gold discoveries of 1848 upon price levels, to the determinations of the shape of the Earth and the speed of light, to the meter of Virgil's poetry and the prediction of the Second Coming of Christ. The title essay tells how the statistician Karl Pearson came to issue the challenge to put "statistics on the table" to the economists Marshall, Keynes, and Pigou in 1911. The 1911 dispute involved the effect of parental alcoholism upon children, but the challenge is general and timeless: important arguments require evidence, and quantitative evidence requires statistical evaluation. Some essays examine deep and subtle statistical ideas such as the aggregation and regression paradoxes; others tell of the origin of the Average Man and the evaluation of fingerprints as a forerunner of the use of DNA in forensic science. Several of the essays are entirely nontechnical; all examine statistical ideas with an ironic eye for their essence and what their history can tell us about current disputes.
History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace

Arthur Lyon Bowley, the founding father of modern statistics, was an important and colorful figure and a leader in cementing the foundations of statistical methodology, including survey methodology, and of the applications of statistics to economical and social issues during the late 19th and early 20th centuries. In many respects, he was ahead of his time. The giants in this field around that time were largely concentrated in the British Isles and Scandinavian countries; among these contributors, Arthur Bowley was one of the most active in revolutionizing statistical methodology and its economic applications. However, Bowley has been vastly undervalued by subsequent commentators? while hundreds of articles and books have been written on Karl Pearson, those on Arthur Bowley amount to a dozen or less. This book seeks to remedy this and fill in an important omission in the monographical literature on the history of statistics. In particular, the recent resurgence of interest in poverty research has led to a renewed interest in Bowley's legacy.

Measurement and Statistics on Science and Technology

The Science of Conjecture

Past, Present, and Future of Statistical Science was commissioned in 2013 by the Committee of Presidents of Statistical Societies (COPSS) to celebrate its 50th anniversary and the International Year of Statistics. COPSS consists of five charter member statistical societies in North America and is best known for sponsoring prestigious awards in stat

Disciplining Statistics

"A magisterial account of matters as diverse as the Talmud, Justinian's Digest, torture, witch hunts, Tudor treason trials, ancient and medieval astronomy and physics, humanist historiography, scholastic philosophy, speculations in public debt, and 17th century mathematics." --
The Seven Pillars of Statistical Wisdom

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 "This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource."
–Short Book Reviews of ISI

A History of Mathematical Statistics from 1750 to 1930

Based around a number of illustrative case studies, this book charts the development of our modern-day reliance on statistics. Topics covered include scientific innovations, administrative issues and the use of numbers in politics. By looking at these aspects of statistics together, the authors are able to present a truly original work.

The History of Statistics

Begins with study of history of statistics, and shows how the evolution of modern statistics has been inextricably bound up with the knowledge and power of governments.

The History of Statistics

This magnificent book is the first comprehensive history of statistics from its beginnings around 1700 to its emergence as a distinct and mature discipline around 1900. Stephen M. Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several
applied sciences including astronomy, geodesy, experimental psychology, genetics, and sociology. He addresses many intriguing questions: How did scientists learn to combine measurements made under different conditions? And how were they led to use probability theory to measure the accuracy of the result? Why were statistical methods used successfully in astronomy long before they began to play a significant role in the social sciences? How could the introduction of least squares predate the discovery of regression by more than eighty years? On what grounds can the major works of men such as Bernoulli, De Moivre, Bayes, Quetelet, and Lexis be considered partial failures, while those of Laplace, Galton, Edgeworth, Pearson, and Yule are counted as successes? How did Galton’s probability machine (the quincunx) provide him with the key to the major advance of the last half of the nineteenth century? Stigler’s emphasis is upon how, when, and where the methods of probability theory were developed for measuring uncertainty in experimental and observational science, for reducing uncertainty, and as a conceptual framework for quantitative studies in the social sciences. He describes with care the scientific context in which the different methods evolved and identifies the problems (conceptual or mathematical) that retarded the growth of mathematical statistics and the conceptual developments that permitted major breakthroughs. Statisticians, historians of science, and social and behavioral scientists will gain from this book a deeper understanding of the use of statistical methods and a better grasp of the promise and limitations of such techniques. The product of ten years of research, The History of Statistics will appeal to all who are interested in the humanistic study of science.

Introducing Statistics

What gives statistics its unity as a science? Stephen Stigler sets forth the seven foundational ideas of statistics—a scientific discipline related to but distinct from mathematics and computer science and one which often seems counterintuitive. His original account will fascinate the interested layperson and engage the professional statistician.

A History of Probability and Statistics and Their
Applications before 1750

From the medicine we take, the treatments we receive, the aptitude and psychometric tests given by employers, the cars we drive, the clothes we wear to even the beer we drink, statistics have given shape to the world we inhabit. For the media, statistics are routinely 'damning', 'horrifying', or, occasionally, 'encouraging'. Yet, for all their ubiquity, most of us really don't know what to make of statistics. Exploring the history, mathematics, philosophy and practical use of statistics, Eileen Magnello - accompanied by Bill Mayblin's intelligent graphic illustration - traces the rise of statistics from the ancient Babylonians, Egyptians and Chinese, to the censuses of Romans and the Greeks, and the modern emergence of the term itself in Europe. She explores the 'vital statistics' of, in particular, William Farr, and the mathematical statistics of Karl Pearson and R.A. Fisher. She even tells how knowledge of statistics can prolong one's life, as it did for evolutionary biologist Stephen Jay Gould, given eight months to live after a cancer diagnoses in 1982 - and he lived until 2002. This title offers an enjoyable, surprise-filled tour through a subject that is both fascinating and crucial to understanding our world.

Making It Count

Exactly what is the state of the art in statistics as we move forward into the 21st century? What promises, what trends does its future hold? Through the reflections of 70 of the world's leading statistical methodologists, researchers, theorists, and practitioners, Statistics in the 21st Century answers those questions. Originally published in the Journal of the American Statistical Association, this collection of vignettes examines our statistical past, comments on our present, and speculates on our future. Although the coverage is broad and the topics diverse, it reveals the essential intellectual unity of the field as we see the same themes recurring in different contexts. We see how the development of statistics has been driven by the unprecedented and still growing range of applications, by the explosion in computer technology, and by the new types of data that continue to emerge and advance the discipline. Organized around major areas of application and leading up to vignettes
on theory and methods, Statistics in the 21st Century forms a landmark record of the progress and perceived future of the discipline. No student, researcher, or practitioner of statistics should miss this extraordinary opportunity to view the past, present, and future world of statistics through the eyes of its foremost thinkers.

Statistics in the 21st Century

This book provides a selection of pioneering papers or extracts ranging from Pascal (1654) to R.A. Fisher (1930). The editors' annotations put the articles in perspective for the modern reader. A special feature of the book is the large number of translations, nearly all made by the authors. There are several reasons for studying the history of statistics: intrinsic interest in how the field of statistics developed, learning from often brilliant ideas and not reinventing the wheel, and livening up general courses in statistics by reference to important contributors.

Modern Statistics for Modern Biology

If you think that statistics has nothing to say about what you do or how you could do it better, then you are either wrong or in need of a more interesting job. Stephen Senn explains here how statistics determines many decisions about medical care, from allocating resources for health, to determining which drugs to license, to cause-and-effect in relation to disease. He tackles big themes: clinical trials and the development of medicines, life tables, vaccines and their risks or lack of them, smoking and lung cancer and even the power of prayer. He entertains with puzzles and paradoxes and covers the lives of famous statistical pioneers. By the end of the book the reader will see how reasoning with probability is essential to making rational decisions in medicine, and how and when it can guide us when faced with choices that impact on our health and even life.

Classic Problems of Probability

A history of how Chinese officials used statistics to define a new society
in the early years of the People’s Republic of China. In 1949, at the end of a long period of wars, one of the biggest challenges facing leaders of the new People’s Republic of China was how much they did not know. The government of one of the world’s largest nations was committed to fundamentally reengineering its society and economy via socialist planning while having almost no reliable statistical data about their own country. Making It Count is the history of efforts to resolve this “crisis in counting.” Drawing on a wealth of sources culled from China, India, and the United States, Arunabh Ghosh explores the choices made by political leaders, statisticians, academics, statistical workers, and even literary figures in attempts to know the nation through numbers. Ghosh shows that early reliance on Soviet-inspired methods of exhaustive enumeration became increasingly untenable in China by the mid-1950s. Unprecedented and unexpected exchanges with Indian statisticians followed, as the Chinese sought to learn about the then-exciting new technology of random sampling. These developments were overtaken by the tumult of the Great Leap Forward (1958–61), when probabilistic and exhaustive methods were rejected and statistics was refashioned into an ethnographic enterprise. By acknowledging Soviet and Indian influences, Ghosh not only revises existing models of Cold War science but also globalizes wider developments in the history of statistics and data. Anchored in debates about statistics and its relationship to state building, Making It Count offers fresh perspectives on China’s transition to socialism.

Statistical Thought

The long-awaited second volume of Anders Hald's history of the development of mathematical statistics. Anders Hald's A History of Probability and Statistics and Their Applications before 1750 is already considered a classic by many mathematicians and historians. This new volume picks up where its predecessor left off, describing the contemporaneous development and interaction of four topics: direct probability theory and sampling distributions; inverse probability by Bayes and Laplace; the method of least squares and the central limit theorem; and selected topics in estimation theory after 1830. In this rich and detailed work, Hald carefully traces the history of parametric
statistical inference, the development of the corresponding mathematical methods, and some typical applications. Not surprisingly, the ideas, concepts, methods, and results of Laplace, Gauss, and Fisher dominate his account. In particular, Hald analyzes the work and interactions of Laplace and Gauss and describes their contributions to modern theory. Hald also offers a great deal of new material on the history of the period and enhances our understanding of both the controversies and continuities that developed between the different schools. To enable readers to compare the contributions of various historical figures, Professor Hald has rewritten the original papers in a uniform modern terminology and notation, while leaving the ideas unchanged. Statisticians, probabilists, actuaries, mathematicians, historians of science, and advanced students will find absorbing reading in the author's insightful description of important problems and how they gradually moved toward solution.

The Rise of Statistical Thinking, 1820-1900

An essential work on the origins of statistics The Rise of Statistical Thinking, 1820–1900 explores the history of statistics from the field's origins in the nineteenth century through to the factors that produced the burst of modern statistical innovation in the early twentieth century. Theodore Porter shows that statistics was not developed by mathematicians and then applied to the sciences and social sciences. Rather, the field came into being through the efforts of social scientists, who saw a need for statistical tools in their examination of society. Pioneering statistical physicists and biologists James Clerk Maxwell, Ludwig Boltzmann, and Francis Galton introduced statistical models to the sciences by pointing to analogies between their disciplines and the social sciences. A new preface by the author looks at the enduring relevance and significance of the book since its initial publication, and considers the current place of statistics in scientific research.

Strength in Numbers: The Rising of Academic Statistics Departments in the U. S.

Handbook of Forensic Statistics is a collection of chapters by leading
Read Book The History Of Statistics The Measurement Of Uncertainty Before 1900

authorities in forensic statistics. Written for statisticians, scientists, and legal professionals having a broad range of statistical expertise, it summarizes and compares basic methods of statistical inference (frequentist, likelihoodist, and Bayesian) for trace and other evidence that links individuals to crimes, the modern history and key controversies in the field, and the psychological and legal aspects of such scientific evidence. Specific topics include uncertainty in measurements and conclusions; statistically valid statements of weight of evidence or source conclusions; admissibility and presentation of statistical findings; and the state of the art of methods (including problems and pitfalls) for collecting, analyzing, and interpreting data in such areas as forensic biology, chemistry, and pattern and impression evidence. The particular types of evidence that are discussed include DNA, latent fingerprints, firearms and toolmarks, glass, handwriting, shoeprints, and voice exemplars.

Mathematical Statistics

Classical statistical theory—hypothesis testing, estimation, and the design of experiments and sample surveys—is mainly the creation of two men: Ronald A. Fisher (1890-1962) and Jerzy Neyman (1894-1981). Their contributions sometimes complemented each other, sometimes occurred in parallel, and, particularly at later stages, often were in strong opposition. The two men would not be pleased to see their names linked in this way, since throughout most of their working lives they detested each other. Nevertheless, they worked on the same problems, and through their combined efforts created a new discipline. This new book by E.L. Lehmann, himself a student of Neyman’s, explores the relationship between Neyman and Fisher, as well as their interactions with other influential statisticians, and the statistical history they helped create together. Lehmann uses direct correspondence and original papers to recreate an historical account of the creation of the Neyman-Pearson Theory as well as Fisher’s dissent, and other important statistical theories.

Statistics on the Table

What was history's biggest empire? Or the tallest building of the ancient
world? What was the average life expectancy in medieval Byzantium? The average wage in Old Kingdom Egypt? Where did scientific writing first emerge? What was the bloodiest ritual human sacrifice ever? We are used to thinking about history in terms of stories. Yet we understand our own world through data: vast arrays of statistics that reveal the workings of our societies. So, join the radical historians Peter Turchin and Dan Hoyer for a dive into the numbers that reveal the true shape of the past. Drawing on their own Seshat project, a staggeringly ambitious attempt to log each piece of demographic and econometric information that can be reliably estimated for every society that has ever existed, Figuring Out The Past does more than tell the story of the past: it shows you the large-scale patterns.

Statistics and the German State, 1900-1945

Detailing the history of probability, this book examines the classic problems of probability that have shaped the field and emphasizes problems that are counter-intuitive by nature. Classic Problems of Probability is rich in the history of probability while keeping the explanations and discussions as accessible as possible.

Statistics, Public Debate and the State, 1800–1945

Considers statistical innovation, 1900-1945, in the Weimar Republic and the Third Reich.

Modern Interdisciplinary University Statistics Education

How do we objectively measure scientific activities? What proportion of economic activities should a society devote to research and development? How can public-sector and private-sector research best be directed to achieve social goals? Governments and researchers from industrial countries have been measuring science and technology for more than eighty years. This book provides the first comprehensive account of the attempts to measure science and technology activities in Western countries and the successes and shortcomings of statistical systems. Godin
Read Book The History Of Statistics The Measurement Of Uncertainty Before 1900

guides readers through the historical moments that led to the development of statistics on science and technology and also examines the socio-political dynamics behind social measurement. This enlightening account will be of interest to students and academics investigating science measurement as well as policy makers working in this burgeoning field.

Uncertainty

A far-reaching course in practical advanced statistics for biologists using R/Bioconductor, data exploration, and simulation.

Probability and Statistics

Presents a survey of the history and evolution of the branch of mathematics that focuses on probability and statistics, including useful applications and notable mathematicians in this area.

History, Theory, and Technique of Statistics

If you have ever looked for P-values by shopping at P mart, tried to watch the Bernoulli Trails on "People's Court," or think that the standard deviation is a criminal offense in six states, then you need The Cartoon Guide to Statistics to put you on the road to statistical literacy. The Cartoon Guide to Statistics covers all the central ideas of modern statistics: the summary and display of data, probability in gambling and medicine, random variables, Bernoulli Trails, the Central Limit Theorem, hypothesis testing, confidence interval estimation, and much more—all explained in simple, clear, and yes, funny illustrations. Never again will you order the Poisson Distribution in a French restaurant!

Arthur L Bowley

Statistical science as organized in formal academic departments is relatively new. With a few exceptions, most Statistics and Biostatistics departments have been created within the past 60 years. This book consists of a set of memoirs, one for each department in the U.S. created
by the mid-1960s. The memoirs describe key aspects of the department’s history -- its founding, its growth, key people in its development, success stories (such as major research accomplishments) and the occasional failure story, PhD graduates who have had a significant impact, its impact on statistical education, and a summary of where the department stands today and its vision for the future. Read here all about how departments such as at Berkeley, Chicago, Harvard, and Stanford started and how they got to where they are today. The book should also be of interests to scholars in the field of disciplinary history.

Handbook of Forensic Statistics

Classic Topics on the History of Modern Mathematical Statistics

Copyright code: ca0be760a76b024699408c2e1d82fefd